BEAM DEFLECTION FORMULAE

BEAM TYPE	SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x		MAXIMUM DEFLECTION		
1. Cantilever Be	am – Concentrated load P at	the free end			
$\begin{array}{c c} P & X \\ \hline V & I \\ \end{array}$	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI}(3l - x)$	$\delta_{\max} = \frac{Pl^3}{3EI}$		
2. Cantilever Be	am - Concentrated load P at	any point			
$ \begin{array}{c c} a & P & b \\ \hline & \delta_{\text{max}} \\ \end{array} $	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$	$\delta_{\max} = \frac{Pa^2}{6EI} (3l - a)$		
3. Cantilever Be	am – Uniformly distributed lo	oad ω (N/m)			
$\begin{array}{c c} \omega & \downarrow & \chi \\ \hline \\ y & \downarrow \\ l & \uparrow \end{array}$	$\theta = \frac{\omega l^3}{6EI}$	$y = \frac{\cos^2}{24EI} \left(x^2 + 6l^2 - 4lx \right)$	$\delta_{\max} = \frac{\omega l^4}{8EI}$		
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω _o (N/m)					
$\omega = \frac{\omega_s}{l}(l - x)$ $\omega_s = \frac{\omega_s}{l}(l - x)$ δ_{max}	$\theta = \frac{\omega_o l^3}{24EI}$	$y = \frac{\omega_0 x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$	$\delta_{\max} = \frac{\omega_{\circ} l^4}{30EI}$		
5. Cantilever Beam – Couple moment M at the free end					
$\begin{array}{c c} I & \downarrow x \\ \hline y & \delta_{\text{max}} \end{array}$	$\theta = \frac{Ml}{EI}$	$y = \frac{Mx^2}{2EI}$	$\delta_{\max} = \frac{Ml^2}{2EI}$		

BEAM DEFLECTION FORMULAS

BEAM TYPE	SLOPE AT ENDS	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM AND CENTER DEFLECTION			
6. Beam Simply Supported at Ends – Concentrated load P at the center						
1 1		$y = \frac{Px}{12EI} \left(\frac{3l^2}{4} - x^2 \right)$ for $0 < x < \frac{l}{2}$	$\delta_{\text{max}} = \frac{Pl^3}{48EI}$			
7. Beam Simply	Supported at Ends – Concen	trated load P at any point				
	$\theta_1 = \frac{Pb(l^2 - b^2)}{6lEI}$ $\theta_2 = \frac{Pab(2l - b)}{6lEI}$	$y = \frac{2b}{6lEI} \left[\frac{1}{b} (x-a)^3 + (l^2 - b^2) x - x^3 \right]$ for $a < x < l$	$\delta_{\text{max}} = \frac{Pb (l^2 - b^2)^{3/2}}{9\sqrt{3} lEI} \text{ at } x = \sqrt{(l^2 - b^2)/3}$ $\delta = \frac{Pb}{48EI} (3l^2 - 4b^2) \text{ at the center, if } a > b$			
8. Beam Simply	Supported at Ends - Uniforn	nly distributed load ω (N/m)				
δ_{max}	$\theta_1 = \theta_2 = \frac{\omega l^3}{24EI}$	$y = \frac{60x}{24EI} \left(l^3 - 2lx^2 + x^3 \right)$	$\delta_{\text{max}} = \frac{5\omega l^4}{384EI}$			
9. Beam Simply	Supported at Ends – Couple	moment M at the right end				
y l	$\theta_1 = \frac{Ml}{6EI}$ $\theta_2 = \frac{Ml}{3EI}$	$y = \frac{Mlx}{6EI} \left(1 - \frac{x^2}{I^2} \right)$	$\delta_{\text{max}} = \frac{Ml^2}{9\sqrt{3} EI} \text{ at } x = \frac{l}{\sqrt{3}}$ $\delta = \frac{Ml^2}{16EI} \text{ at the center}$			
10. Beam Simply	Supported at Ends - Unifor	mly varying load: Maximum intensity ω _o (N/m)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\theta_1 = \frac{7\omega_o l^3}{360EI}$ $\theta_2 = \frac{\omega_o l^3}{45EI}$	$y = \frac{\omega_0 x}{360 lEI} \left(7l^4 - 10l^2 x^2 + 3x^4 \right)$	$\delta_{\text{max}} = 0.00652 \frac{\omega_o l^4}{EI} \text{ at } x = 0.519 l$ $\delta = 0.00651 \frac{\omega_o l^4}{EI} \text{ at the center}$			

SCHEMA A1

Supported-supported beam with uniform load q

$$\varphi_A = \varphi_B = \frac{q \cdot L^3}{24 \cdot E \cdot J}$$

$$f_{\text{max}} = \frac{5}{384} \cdot \frac{q \cdot L^4}{E \cdot J}$$

$$M_{\text{max}} = \frac{q \cdot L^2}{8}$$

$$V_A = V_B = \frac{q \cdot L}{2}$$

SCHEMA A2

Supported-supported beam with centered load

$$\varphi_A = \varphi_B = \frac{P \cdot L^2}{16 \cdot E \cdot J}$$

$$f_{\text{max}} = \frac{8}{384} \cdot \frac{P \cdot L^3}{E \cdot J}$$

$$M_{\text{max}} = \frac{P \cdot L}{4}$$

$$V_A = V_B = \frac{P}{2}$$

SCHEMA A3

Supported-supported beam with moment in B

$$\varphi_A = \frac{M \cdot L}{6 \cdot E \cdot J}$$
 $\varphi_B = \frac{M \cdot L}{3 \cdot E \cdot J}$

$$\varphi_B = \frac{M \cdot L}{3 \cdot E \cdot J}$$

$$f_{L/2} = \frac{1}{16} \cdot \frac{M \cdot L^2}{E \cdot J}$$
 $f_{MAX} = 1,2064 \cdot f_{L/2}$

$$f_{MAX} = 1,2064 \cdot f_{L/2}$$

$$M_A = 0$$
 $M_B = M$

$$M_{\scriptscriptstyle D} = M$$

$$V_A = -V_B = \frac{M}{L}$$

One end fixed beam with uniform load

$$\varphi_B = \frac{q \cdot L^3}{6 \cdot E \cdot J}$$

$$f_{\text{max}} = \frac{1}{8} \cdot \frac{q \cdot L^4}{E \cdot I}$$

$$M_A = \frac{q \cdot L^2}{2}$$

$$V_A = q \cdot L$$

SCHEMA B2

One end fixed beam with load in B

$$\varphi_B = \frac{P \cdot L^2}{2 \cdot E \cdot I}$$

$$f_B = \frac{1}{3} \cdot \frac{P \cdot L^3}{E \cdot J}$$

$$M_A = P \cdot L$$

$$V_A = -V_B = P$$

SCHEMA B3

One end fixed beam with moment in B

$$\varphi_B = \frac{M \cdot L}{E \cdot J}$$

$$f_B = \frac{M \cdot L^2}{2 \cdot E \cdot I}$$

$$M_A = M$$
 $V_A = 0$

SCHEMA C1

Fixed-supported beam with uniform load q

$$\varphi_B = \frac{q \cdot L^3}{48 \cdot E \cdot J}$$

$$f_{L/2} = \frac{2}{384} \cdot \frac{q \cdot L^4}{E \cdot J} \qquad \qquad f_{\text{max}} = 1,04 \cdot f_{L/2}$$

$$M_A = \frac{q \cdot L^2}{8}$$
 $M_{5/8 \cdot L} = \frac{q \cdot L^2}{14,22}$

$$V_A = \frac{5}{8} \cdot q \cdot L \qquad \qquad V_B = \frac{3}{8} \cdot q \cdot L$$

SCHEMA C2

Fixed-supported beam with concentrated load in the center

$$\varphi_B = \frac{P \cdot L^2}{32 \cdot E \cdot J}$$

$$f_{L/2} = \frac{3.5}{384} \cdot \frac{P \cdot L^3}{E \cdot J}$$
 $f_{\text{max}} = 1,022 \cdot f_{L/2}$

$$M_A = \frac{3}{16} \cdot P \cdot L$$
 $M_{L/2} = \frac{2.5}{16} \cdot P \cdot L$

$$V_A = \frac{11}{16} \cdot P \qquad V_B = \frac{5}{16} \cdot P$$

1/3·L

BEAM AND FRAME SCHEMES

SCHEMA C3

Fixed-supported beam with moment M in B

$$\varphi_B = \frac{M \cdot L}{4 \cdot E \cdot J}$$

$$M_A = \frac{M}{2} \qquad M_B = M$$

$$V_A = -V_B = \frac{3 \cdot M}{2 \cdot L}$$

SCHEMA D1

Fixed-fixed beam with uniform load

$$f_{MAX} = \frac{1}{384} \cdot \frac{q \cdot L^4}{E \cdot J}$$

$$M_A = M_B = \frac{q \cdot L^2}{12}$$
 $M_{L/2} = \frac{q \cdot L^2}{24}$

$$V_A = V_B = \frac{q \cdot L}{2}$$

SCHEMA D2

Fixed-fixed beam with concentrated load in the center

$$f_{Max} = \frac{2}{384} \cdot \frac{P \cdot L^3}{E \cdot J}$$

$$M_A = M_B = \frac{P \cdot L}{8}$$
 $M_{L/2} = \frac{P \cdot L}{8}$

$$V_A = V_B = \frac{P}{2}$$

$$R_A = q \cdot a \cdot \frac{a+2b}{2l}; \quad R_B = q \cdot \frac{a^2}{2l}$$

$$T_A = R_A; \quad T_B = -R_B$$

$$M_A = M_B = 0$$

$$M_{max} = \frac{R_A^2}{q}$$

$$x = \frac{R_A}{q}$$

$$R_{A} = \frac{b}{l} \cdot F; \quad R_{B} = \frac{l+a}{l} \cdot F$$

$$T_{A} = -\frac{b}{l} \cdot F; \quad T_{B} = F$$

$$M_{A} = 0$$

$$M_{max} = -F \cdot b$$

$$f = \frac{F}{E \cdot l} \cdot \frac{(l+b) \cdot b^{2}}{3}$$

$$\begin{split} R_A &= R_B = F \\ T_A &= -R_A; \quad T_B = R_B \\ M_{max} &= -F \cdot a \\ f_1 &= \frac{F \cdot a \cdot l^2}{8 \cdot E \cdot I} \\ f &= \frac{F \cdot a^2}{3 \cdot E \cdot I} \cdot \left(a + \frac{3l}{2}\right) \end{split}$$

$$R_A = R_B = \frac{q \cdot l^2}{2}$$

$$T_A = |R_A|; \quad T_B = |R_B|$$

$$M_A = \frac{-q \cdot a}{2}$$

$$M_1 = \frac{q \cdot l^2}{4} \cdot \left(\frac{b}{l} - \frac{1}{2}\right)$$

$$f = \frac{q \cdot a}{24 \cdot E \cdot I} \cdot (3a^2 - b^3 + 6a^2 \cdot b)$$

$$R_{A} = \frac{q \cdot l}{2} \cdot \left(3 - \frac{3l}{2a} - \frac{a}{4l}\right)$$

$$R_{B} = \frac{q \cdot l}{2} \cdot \left(\frac{3l}{2a} + \frac{a}{4l} - 1\right)$$

$$T_{A} = R_{A}; \quad T_{B} = |R_{B}|$$

$$M_{A} = q \cdot l \cdot \frac{2b^{2} - a^{2}}{8l}$$

$$M_{B} = -\frac{q \cdot b^{2}}{2}$$

$$M_{A} = M_{max} \quad \text{se} \quad a > \sqrt{6} \cdot b$$

$$M_{B} = M_{max} \quad \text{se} \quad a < \sqrt{6} \cdot b$$

$$R_A = \frac{F}{2l^3} \cdot (3l^2 - b^2) \cdot b$$

$$R_B = \frac{F}{2l^3} \cdot (2l + b) \cdot a^2$$

$$T_A = R_A; \quad T_B = -R_B$$

$$M_A = -\frac{F \cdot a \cdot b \cdot (l + b)}{2l^2}$$

$$M_C = \frac{F \cdot a^2 \cdot b \cdot (2l + b)}{2l^3}$$

$$f_C = \frac{F}{E \cdot l} \cdot \frac{a^3 \cdot b^2 \cdot (3l + b)}{12l^3}$$

$$f_X = \frac{F \cdot a^3}{12E \cdot l} \left[3b - (2l + b) \cdot \left(\frac{l - x}{l} \right) \right] \left(\frac{l - x}{l} \right)$$

$$R_A = R_B = \frac{5}{16} \cdot F; \quad R_C = \frac{22}{16} \cdot F$$

$$T_A = R_A; \quad T_B = -R_B$$

$$M_A = M_B = \frac{5}{32} \cdot F \cdot l$$

$$M_C = -\frac{3}{16} \cdot F \cdot l$$

$$R_A = R_B = \frac{3}{8} \cdot q \cdot l; \quad R_C = \frac{5}{4} \cdot q \cdot l$$

$$T_A = R_A; \quad T_B = -R_B$$

$$M = \frac{9}{128} \cdot q \cdot l^2$$

$$M_C = -\frac{1}{8} \cdot q \cdot l^2$$

$$R_A = R_B = \frac{1}{2} \cdot q \cdot l; \quad R_C = q \cdot l$$

$$M = \frac{1}{24} \cdot q \cdot l^2$$

$$M_A = M_B = M_C = -\frac{1}{12} \cdot q \cdot l^2$$

$$R_A = R_D = 0,005 \cdot q \cdot l$$

$$R_B = R_C = 0,550 \cdot q \cdot l$$

$$M = \frac{5}{67} \cdot q \cdot l^2$$

$$M_A = M_B = M_C = -\frac{1}{20} \cdot q \cdot l^2$$

$$R_A = R_D = 0,450 \cdot q \cdot l$$

$$R_B = R_C = 0,550 \cdot q \cdot l$$

$$M_1 = -\frac{1}{20} \cdot q \cdot l^2$$

$$M_2 = \frac{10}{99} \cdot q \cdot l^2$$

$$\begin{split} R_A &= 0,383 \cdot q \cdot l; \quad R_B = 1,2 \cdot q \cdot l \\ R_C &= 0,450 \cdot q \cdot l; \quad R_D = 0,033 \cdot q \cdot l \\ M_1 &= \frac{1}{12,7} \cdot q \cdot l^2; \quad M_B = -\frac{1}{8,55} \cdot p \cdot l^2 \\ M_C &= -\frac{1}{30,3} \cdot q \cdot l^2; \quad M_2 = \frac{1}{18,3} \cdot q \cdot l^2 \end{split}$$

$$\begin{split} R_A &= 0,393 \cdot q \cdot l \quad R_B = 1,143 \cdot q \cdot l \\ R_C &= 0,929 \cdot q \cdot l; \quad R_D = 1,143 \cdot q \cdot l \\ R_E &= 0,393 \cdot q \cdot l \\ M_1 &= \frac{1}{13} \cdot q \cdot l^2; \quad M_B = -\frac{1}{8,55} \cdot p \cdot l^2 \\ M_C &= -\frac{1}{14,1} \cdot q \cdot l^2; \quad M_2 = \frac{1}{27,75} \cdot q \cdot l^2 \end{split}$$

Tabella 6. Travi ad asse rettilineo, dati per varie situazioni di carico e vincolo

$$Y_A = 0$$
; $M_A = -m$

$$Y_A = P; \quad M_A = -PL$$

$$Y_A = PL; \quad M_A = -\frac{1}{2}PL^2$$
 $Y_A = \frac{1}{2}PL; \quad M_A = -\frac{1}{6}PL^2$

$$T = cost = 0$$

$$T = cost = P$$

$$T = pL \zeta$$

$$Y_A = \frac{\cdot}{2} PL; \quad M_A = -\frac{\cdot}{6} PL$$

$$M = cost = -m$$

$$M = -PL\zeta$$

$$M = -\frac{1}{2} pL^2 \zeta^2$$

$$M = -\frac{1}{6} pL^2 \zeta^3$$

 $T = \frac{1}{2} pL \zeta^2$

$$\varphi = \frac{mL}{EI} \xi$$

$$\varphi = \frac{1}{2} \frac{PL^2}{EI} \xi (1 + \zeta)$$

$$\varphi = \frac{1}{6} \frac{pL^3}{EI} (1 - \zeta^3)$$

$$\varphi = \frac{1}{24} \frac{pL^3}{EI} (1 - \zeta^4)$$

$$\varphi_B = \frac{mL}{EI}$$

$$\varphi_B = \frac{1}{2} \frac{PL^2}{EI}$$

$$\varphi_B = \frac{1}{6} \frac{pL^3}{EL}$$

$$\varphi_B = \frac{1}{24} \frac{pL^3}{EL}$$

$$v = \frac{1}{2} \frac{mL^2}{EI} \, \xi^2$$

$$v = \frac{1}{6} \frac{PL^3}{EI} \xi^2 (3 - \xi)$$

$$v = \frac{1}{24} \ \frac{pL^4}{EI} \ [3 - \zeta \ (4 - \zeta^3)]$$

$$v = \frac{1}{120} \frac{pL^4}{EI} [4 - \zeta (5 - \zeta^4)]$$

$$v_B = \frac{1}{2} \; \frac{mL^2}{EI}$$

$$v_B = \frac{1}{3} \frac{PL^3}{EI}$$

$$v_B = \frac{1}{8} \frac{pL^4}{EI}$$

$$v_B = \frac{1}{30} \frac{pL^4}{EI}$$

$$Y_A = \frac{1}{2} \ pL; \quad M_A = -\frac{1}{3} \ pL^2$$

$$T = cost =$$

- tronco AC:

 $T = cost = P\beta$

 $M = PL \beta \xi$

$$T = \frac{1}{2} pL \zeta (2 - \zeta)$$

$$T = cost = \frac{m}{I}$$

 $Y_A = -Y_B = \frac{m}{L}$

 $Y_A = P \beta$

$$Y_R = P \alpha$$

$$T = cost = -P \alpha$$

 $M_{\text{max}} = M_C = PL \alpha \beta$

$$M = -\frac{1}{6} pL^2 (3 - \zeta) \zeta^2$$

$$M = -m$$

$$I = cost = M = PL \alpha \zeta$$

$$\varphi = \frac{1}{24} \ \frac{pL^3}{EI} \ [3 - \zeta^3 \ (4 - \zeta)]$$

$$M = -m \zeta$$

$$\psi = \frac{1}{24} = \frac{1}{EI} = 13 = 0$$

$$\varphi = \frac{1}{6} \frac{mL}{EL} (1 - 3 \zeta^2)$$

$$\varphi = \frac{1}{6} \; \frac{PL^2}{EI} \; \beta \; (1 - \beta^2 - 3 \; \xi^2) \qquad \qquad \varphi = -\frac{1}{6} \; \frac{PL^2}{EI} \; \alpha \; (1 - \alpha^2 - 3 \; \xi^2)$$

$$\varphi_B = \frac{1}{8} \frac{pL^3}{EI}$$

$$\varphi_A = \frac{1}{6} \frac{PL^2}{EI} \beta (1 - \beta^2)$$

$$\phi_A = \frac{1}{6} \frac{PL^2}{EI} \beta (1-\beta^2) \qquad \qquad \phi_B = -\frac{1}{6} \frac{PL^2}{EI} \alpha (1-\alpha^2)$$

$$\varphi_B = \frac{1}{8} \frac{pL^3}{EI}$$

$$\varphi_A = -\frac{1}{3} \frac{mL}{EI}$$

$$\varphi_C = \frac{1}{3} \frac{PL^2}{EI} \alpha \beta (\beta - \alpha)$$

$$\beta \in (1 - \beta^2 - \xi^2)$$

$$v_A = \frac{1}{6} \frac{PL^3}{EI} \beta \xi (1 - \beta^2 - \xi^2)$$

$$v_A = \frac{1}{6} \frac{PL^3}{EI} \beta \xi (1 - \beta^2 - \xi^2)$$
 $v_B = \frac{1}{6} \frac{PL^3}{EI} \alpha \zeta (1 - \alpha^2 - \zeta^2)$

$$v_B = \frac{11}{120} \frac{pL^4}{EI}$$

$$v = \frac{1}{120} \frac{pL^4}{EI} [11 - 15 \zeta + \zeta^4 (5 - \zeta)] \quad \phi_B = \frac{1}{6} \frac{mL}{EI}$$

$$v_B = \frac{11}{120} \frac{pL^4}{EI} \qquad \qquad v = -\frac{1}{6} \frac{mL^2}{EI} \zeta (1 - \zeta^2)$$

$$v_C = \frac{1}{3} \frac{PL^3}{EI} \alpha^2 \beta^2$$

$$Y_A = Y_B = \frac{1}{2} pL$$

$$T = \frac{1}{2} pL (1-2 \xi)$$

$$M = \frac{1}{2} pL^2 \zeta \xi$$

$$\xi = \frac{1}{2}$$
: $M = M_{\text{max}} = \frac{1}{8} pL^2$

$$\varphi_A = -\varphi_B = \frac{1}{24} \frac{pL^3}{EI}$$

$$v = \frac{1}{24} \frac{pL^4}{EI} \zeta \xi (1 + \zeta \xi)$$

$$\xi = \frac{1}{2}$$
: $v = v_{\text{max}} = \frac{5}{384} \frac{PL^4}{EI}$

$$Y_A = \frac{1}{6} pL; \quad Y_B = \frac{1}{3} pL$$

$$T = \frac{1}{6} pL (1 - 3 \xi^2) \qquad M_B = \frac{1}{2} m$$

$$M = \frac{1}{6} pL^2 \zeta \xi (1 + \xi)$$
 $T = cost = \frac{3}{2} \frac{m}{L}$ $T = pL\left(\frac{3}{8} - \xi\right)$

$$\xi = \frac{1}{2}: \quad M = M_{\text{max}} = \frac{1}{8} pL^2 \qquad \qquad \xi = \frac{\sqrt{3}}{3}: \quad M = M_{\text{max}} = \frac{\sqrt{3}}{27} pL^2 \qquad \qquad M = -\frac{1}{2} m (2 - 3 \xi) \qquad \qquad M = \frac{1}{8} PL^2 \xi (3 - 4 \xi)$$

$$\varphi = \frac{1}{360} \frac{pL^2}{EL} [7 - 15 \xi^2 (2 - \xi^2)]$$

$$\varphi_A = \frac{7}{360} \frac{pL^3}{EI}$$

$$\varphi_B = -\frac{8}{360} \frac{pL^3}{EI}$$

$$Y_A = -Y_B = \frac{3}{2} \frac{m}{L}$$

$$Y_A = \frac{3}{8} pL; Y_B = \frac{5}{8} pL$$

$$M_B = \frac{1}{2} m$$

$$= \frac{1}{2} m M_B = -\frac{1}{8} pL^2$$

$$T = cost = \frac{3}{2} \frac{m}{L}$$

$$I = PL\left(\frac{8}{8} - 5\right)$$

$$M = -\frac{1}{2} m (2 - 3 \zeta)$$

$$M = \frac{1}{8} PL^2 \, \xi \, (3 - 4 \, \xi)$$

$$\varphi = \frac{1}{4} \frac{mL}{EI} \zeta (2 - 3 \zeta)$$

$$\varphi = \frac{1}{48} \frac{1}{EI} \zeta (1 + \zeta - 8)$$

$$\rho_A = -\frac{1}{4} \frac{mE}{EI}$$

$$\varphi_A = -\frac{1}{4} \frac{mL}{EI} \qquad \qquad \varphi_A = \frac{1}{48} \frac{pL^3}{EI}$$

$$v = -\frac{1}{4} \frac{mL^2}{EI} \xi \zeta$$

$$v = -\frac{1}{4} \frac{mL^2}{EI} \xi \zeta^2$$
 $v = \frac{1}{48} \frac{pL^4}{EI} \xi \zeta^2 (1 + 2 \xi)$

$$\xi = \frac{1}{3}$$
: $v = v_{\min} = -\frac{1}{27} \frac{mL^2}{EI}$

12.

- tronco AC:

$$Y_A = \frac{1}{2} P \beta^2 (2 + \alpha)$$

$$Y_B = \frac{1}{2} P \alpha (3 - \alpha^2)$$

$$M_B = -\frac{1}{2} PL \alpha (1 - \alpha^2)$$

$$T = cost = -Y$$

$$M = \frac{1}{2} PL \xi \beta^2 (2 + \alpha)$$

$$T = \cos x = T_A$$

$$T = \cos x = -T_B$$

$$M = \frac{1}{2} PL \xi \beta^2 (2 + \alpha)$$

$$M = \frac{1}{2} PL \alpha (3 \zeta + \alpha^2 \xi - 1)$$

$$T = \frac{1}{10} pL (1 - 5 \xi^2)$$

$$T = \frac{1}{40} pL (20 \zeta^2 - 9)$$

$$\phi = \frac{1}{4} \frac{PL^2}{EI} \beta^2 \left[\alpha - (2 + \alpha) \ \xi^2 \right]; \qquad \phi = \frac{1}{4} \frac{PL^2}{EI} \alpha \zeta \left[\alpha^2 (2 - \zeta) + 3 \zeta - 2 \right] \qquad M = \frac{1}{10} pL^2 \ \xi \ (3 - 5 \ \xi^2) \qquad M = \frac{1}{120} pL^2 \ \xi \ (20 \zeta^2 + 20 \zeta - 7)$$

$$\omega = \frac{1}{2} \frac{PL^2}{\alpha \zeta [\alpha^2(2-\zeta) + 3\zeta - 2]}$$

 $\varphi_A = \frac{1}{4} \frac{PL^2}{EI} \alpha \beta^2$

$$\varphi_C = \frac{1}{4} \frac{PL^2}{EL} \alpha \beta^2 (1 - 2\alpha - \alpha^2)$$

$$v = \frac{1}{12} \frac{PL^3}{EI} \xi \beta^2 [3\alpha - (2 + \alpha) \xi^2]$$

$$v = \frac{1}{12} \frac{PL^3}{EI} \ \xi \beta^2 \ [3\alpha - (2 + \alpha) \ \xi^2] \qquad \qquad v = \frac{1}{12} \frac{PL^3}{EI} \ \alpha \zeta^2 \ [3(1 - \alpha^2) + \ \ \ \phi_A = \frac{1}{120} \frac{pL^3}{EI} \qquad \qquad \phi_A = \frac{1}{80} \frac{pL^3}{EI}$$

$$v_C = \frac{1}{12} \frac{PL^3}{EI} \alpha^2 \beta^3 (3+\alpha)$$

$$Y_A = \frac{1}{10} \ pL; \quad Y_B = \frac{2}{5} \ pL$$

$$M_B = -\frac{1}{15} pL^2$$

$$T = \frac{1}{10} pL (1-5 \xi^2)$$

$$M = \frac{1}{10} pL^2 \xi (3-5 \xi^2)$$

$$\varphi = \frac{1}{1 + \frac{pL^3}{2}} \cdot \zeta \left(1 + \xi\right) \left(1 - 5\xi\right)$$

$$\varphi_A = \frac{1}{120} \; \frac{pL^3}{EI}$$

$$v = \frac{1}{120} \frac{pL^4}{r^4} \xi \zeta^2 (1 + \xi)^2$$

$$Y_A = \frac{11}{40} pL; \quad Y_B = \frac{9}{40} pL$$

$$M_B = -\frac{7}{120} pL^2$$

$$T = \frac{1}{40} pL (20 \zeta^2 - 9)$$

$$M = \frac{1}{120} pL^2 \xi (20\zeta^2 + 20\zeta - 7)$$

$$\varphi = \frac{1}{120} \frac{pL^3}{EI} \cdot \zeta (1+\xi) (1-5\xi^2) \qquad \varphi = \frac{1}{240} \frac{pL^3}{EI} \zeta (27 \zeta + 10 \zeta^3 - 14 \zeta^3)$$

$$\varphi_A = \frac{1}{80} \frac{pL^3}{EI}$$

$$v = \frac{1}{120} \frac{pL^4}{EI} \, \xi \, \zeta^2 \, (1 + \xi)^2 \qquad \qquad v = \frac{1}{240} \, \frac{pL^4}{EI} \, \xi \zeta^2 \, (7 - 2 \, \zeta - 2 \zeta^2)$$

10. SIMPLE BEAM — TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

11. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

21. CANTILEVERED BEAM — CONCENTRATED LOAD AT ANY POINT

R.

BEAM AND FRAME SCHEMES

24. BEAM OVERHANGING ONE SUPPORT - UNIFORMLY DISTRIBUTED LOAD

$$R_1 = V_1$$
 $= \frac{w}{2i}(i^2 - a^2)$

$$R_2 = V_2 + V_3 \dots = \frac{w}{2l}(l+a)^2$$

$$V_{s} = \frac{w}{2!} (i^2 + a^2)$$

$$V_x$$
 (between supports) = R_1 - wx

$$(x_1)$$
 (for overhang) = $w(a-x_1)$

$$M_n = \left[\text{at } x = \frac{l}{2} \left[1 - \frac{a^2}{l^2} \right] \right] \dots = \frac{w}{a l^2} (l + a)^2 (l - a)^2$$

$$M_{\nu}$$
 (at R_{ν}).... = $\frac{wa^2}{2}$

$$M_x$$
 (between supports) = $\frac{wx}{2I}(i^2 - a^2 - xI)$

$$M_{x_1}$$
 (for overhang) = $\frac{w}{2}(a - x_1)^2$

$$\Delta_x$$
 (between supports) = $\frac{wx}{24 \, Fl!} (l^4 - 2l^2 \, x^2 + l \, x^3 - 2a^2 \, l^2 + 2a^2 \, x^2)$

$$\Delta_{x_1}$$
 (for overhang) = $\frac{wx_1}{24El} (4a^2l - l^3 + 6a^2x_1 - 4ax_1^2 + x_1^3)$

NOTE: For a negative value of Δ_x , deflection is upward.

25. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD ON OVERHANG

$$R_1 = V_1$$
 = $\frac{wa^2}{2I}$

$$R_{z} = V_{1} + V_{2} = \frac{wa}{2l} (2l + a)$$

$$V_{x_1}$$
 (for overhang) = $w(a-x_1)$

$$M_{\text{max}}$$
 (at $R_{_2}$)..... = $\frac{wa^2}{2}$

$$V_2$$
 M_{xx} (between supports) = $\frac{wa^2x}{2I}$

$$M_{x_1}$$
 (for overhang) = $\frac{w}{2}(a-x_1)^2$

$$\Delta_{\text{max}} \quad \left(\text{between supports at } x = \frac{I}{\sqrt{3}} \right) = \frac{wa^2 I^2}{18\sqrt{3}EI} = 0.0321 \frac{wa^2 I^2}{EI}$$

$$\Delta_{\text{max}}$$
 (for overhang at $x_i = a$).... = $\frac{wa^3}{24EI}$ (47+3a)

$$\Delta_x$$
 (between supports) = $\frac{wa^2x}{12EH}(i^2-x^2)$

$$\Delta_{x_1}$$
 (for overhang) = $\frac{wx_1}{24El} \left(4a^2 / +6a^2 x_1 - 4ax_1^2 + x_1^3 \right)$

27. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS

Total	Equiv. Uniform Load	=	wl
R = 1	/	=	<u>wl</u> 2
V_x	***************************************	=	$w\left(\frac{l}{2}-x\right)$
M _{max}	(at center)	=	wl ²
M_{x}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	=	$\frac{wx}{2}(l-x)$
Δ_{imax}	(at center)	=	5wl ⁴ 384 El
Δ_{x}			
$\Delta_{\mathbf{x}_t}$		=	wi ³ x ₁ 24 El

28. BEAM OVERHANGING ONE SUPPORT - CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS

	Total	Equiv. Uniform Load	$=\frac{8Pab}{I^2}$
	R,= 1	V, (= V _{max} when a < b)	$=\frac{Pb}{I}$
	R ₂ = 1	V_2 (= V_{max} when $a > b$)	$=\frac{Pa}{l}$
	M_{max}	(at point of load)	= <u>Pab</u>
	M_{\times}	(when x < a)	$=\frac{Pbx}{I}$
2	Δ_{max}	$\left(\text{at } x = \sqrt{\frac{a(a+2b)}{3}} \text{ when } a > b\right) \dots$	$=\frac{Pab(a+2b)\sqrt{3a(a+2b)}}{27EII}$
	Δ_{θ}	(at point of load)	$=\frac{Pa^2b^2}{3EII}$
	Δ_x	(when x < a)	$=\frac{Pbx}{6EII}\left(l^2-b^2-x^2\right)$
	Δ_{x}	(when x > a)	$=\frac{Pa(l-x)}{6EH}\left(2lx-x^2-a^2\right)$
	$\Delta_{x_{\dagger}}$,	$=\frac{Pabx_1}{6EII}(l+a)$

29. CONTINUOUS BEAM - TWO EQUAL SPANS - UNIFORM LOAD ON ONE SPAN

Total Equiv. Uniform Load
$$= \frac{49}{64}wI$$
 $R_1 = V_1, ... = \frac{7}{16}wI$
 $R_2 = V_2 + V_3, ... = \frac{5}{8}wI$
 $R_3 = V_4, ... = \frac{1}{16}wI$
 $V_2 = \frac{9}{16}wI$
 M_{max} (at $x = \frac{7}{16}I$) ... $= \frac{49}{512}wI^2$
 M_1 (at support R_2) ... $= \frac{1}{16}wI^2$
 M_2 (when $x < I$) ... $= \frac{wx}{16}(7I - 8x)$
 Δ_{max} (at 0.472 / from R_1) ... $= \frac{0.0092}{EI}$

30. CONTINUOUS BEAM — TWO EQUAL SPANS — CONCENTRATED LOAD AT CENTER OF ONE SPAN

Total Equiv. Uniform Load	$=\frac{13}{8}P$
R = V,	$=\frac{13}{32}P$
R ₂ = V ₂ +V ₃	$=\frac{11}{16}P$
R _s = V	$=-\frac{3}{32}P$
V,	$=\frac{19}{32}P$
M _{emax} (at point of load)	04
M, (at support R ₂)	$=\frac{3}{32}PI$
$\Delta_{\rm BRM}$ (at 0.480 I from R_i)	$=\frac{0.015Pl^3}{El}$

31. CONTINUOUS BEAM - TWO EQUAL SPANS - CONCENTRATED LOAD AT ANY POINT

$$R_{1} = V_{1} \qquad \qquad = \frac{Pb}{4t^{3}} \left(4t^{2} - a(t+a) \right)$$

$$R_{2} = V_{2} + V_{3} \qquad \qquad = \frac{Pa}{2t^{3}} \left(2t^{2} + b(t+a) \right)$$

$$R_{3} = V_{3} \qquad \qquad = -\frac{Pab}{4t^{3}} (t+a)$$

$$V_{2} \qquad \qquad = \frac{Pa}{4t^{3}} \left(4t^{2} + b(t+a) \right)$$

$$M_{chax} \text{ (at point of load)} \qquad \qquad = \frac{Pab}{4t^{3}} \left(4t^{2} - a(t+a) \right)$$

$$M_{\gamma} \qquad \text{(at support } R_{2} \text{)} \qquad \qquad = \frac{Pab}{4t^{2}} (t+a)$$

32. BEAM — UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

33. BEAM — CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

34. SIMPLE BEAM - LOAD INCREASING UNIFORMLY FROM CENTER

Total Equiv. Uniform Load
$$= \frac{2W}{3}$$

 $R=V$ $= \frac{W}{2}$

$$V_x$$
 (when $x < \frac{1}{2}$)..... = $\frac{W}{2} \left(\frac{1-2x}{l} \right)^2$

$$M_{max}$$
 (at center) = $\frac{WI}{12}$

$$M_x$$
 (when $x < \frac{1}{2}$)..... = $\frac{W}{2} \left(x - \frac{2x^2}{i} + \frac{4x^3}{3i^2} \right)$

$$\Delta_{max}$$
 (at center) = $\frac{3WI^3}{320EI}$

$$\Delta_x$$
 (when $x < \frac{I}{2}$).... = $\frac{W}{12EI} \left(x^3 - \frac{x^4}{I} + \frac{2x^5}{5I^2} - \frac{3I^2x}{8} \right)$

35. SIMPLE BEAM — CONCENTRATED MOMENT AT END

Total Equiv. Uniform Load =
$$\frac{8M}{I}$$

$$R=V$$
 = $\frac{M}{I}$

$$M_x$$
 = $M\left(1-\frac{x}{I}\right)$

$$\Delta_{max}$$
 (at $x = 0.423$ /)..... = 0.0642 $\frac{Ml^2}{El}$

$$\Delta_x = \frac{M}{6E^I} \left(3 x^2 - \frac{x^3}{I} - 2Ix \right)$$

36. SIMPLE BEAM — CONCENTRATED MOMENT AT ANY POINT

Total Equiv. Uniform Load =
$$\frac{8M}{I}$$

$$M_x$$
 (when $x < a$)..... = Rx

$$M_x$$
 (when $x > a$)..... = $R(l-x)$

$$\Delta_x$$
 (when $x < a$)..... = $\frac{M}{6EI} \left[\left(6a - \frac{3a^2}{I} - 2I \right) x - \frac{x^3}{I} \right]$

$$\Delta_x$$
 (when $x > a$)..... = $\frac{M}{6EI} \left[3 \left(a^2 + x^2 \right) - \frac{x^3}{I} - \left(2I + \frac{3a^2}{I} \right) x \right]$

37. CONTINUOUS BEAM — THREE EQUAL SPANS — ONE END SPAN UNLOADED

 Δ_{max} (0.4301 from A) = 0.0059 w1 /EI

38. CONTINUOUS BEAM — THREE EQUAL SPANS — END SPANS LOADED

39. CONTINUOUS BEAM - THREE EQUAL SPANS - ALL SPANS LOADED

40. CONTINUOUS BEAM — FOUR EQUAL SPANS — THIRD SPAN UNLOADED

Δ_{max} (0.475 I from E) = 0.0094 w15/E1

41. CONTINUOUS BEAM - FOUR EQUAL SPANS - LOAD FIRT AND THIRD SPANS

42. CONTINUOUS BEAM — FOUR EQUAL SPANS — ALL SPANS LOADED

43. SIMPLE BEAM — ONE CONCENTRATED MOVING LOAD

$$R_{1 \max} = V_{1 \max} (\text{at } x = 0) \dots = P$$
 $M_{\max} \left(\text{at point of load, when } x = \frac{l}{2} \right) \dots = \frac{Pl}{4}$

44. SIMPLE BEAM — TWO EQUAL CONCENTRATED MOVING LOADS

$$R_{1\,\text{max}} = V_{1\,\text{max}} (\text{at } x = 0) \qquad \ldots = P\left(2 - \frac{a}{l}\right)$$
 when $a < (2 - \sqrt{2})l = 0.586l$ under load 1 at $x = \frac{1}{2}\left(l - \frac{a}{2}\right)$...
$$= \frac{P}{2l}\left(l - \frac{a}{2}\right)^2$$
 when $a > (2 - \sqrt{2})l = 0.586l$ with one load at center of span (Case 43) ...
$$= \frac{Pl}{4}$$

45. SIMPLE BEAM — TWO UNEQUAL CONCENTRATED MOVING LOADS

$$R_{1 \max} = V_{1 \max} (\text{at } x = 0)$$
 $= P_1 + P_2 \frac{l - a}{l}$ $= P_1 + P_2 \frac{l - a}{l}$ $= (P_1 + P_2) \frac{x^2}{l}$ $= (P_1 + P_2) \frac{x^2}{l}$ $= \frac{P_1 l}{4}$ load off span (Case 43)

GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS

The maximum shear due to moving concentrated loads occurs at one support when one of the loads is at that support. With several moving loads, the location that will produce maximum shear must be determined by trial.

The maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support.

In the accompanying diagram, the maximum bending moment occurs under load P_1 when x=b. It should also be noted that this condition occurs when lihe centerline of the span is midway between the center of gravity of loads and the nearest concentrated load.

Reactions in end fixed beams

Note: I = beam length, h = transversal section height, A = area, I = inertia moment, E = Joung modulus , α = thermal dilatation coefficient. Positive values for the expression of the reactions corresponds to the sign assumed in the figure for the reactions.

M _A V _B V_B	$M_{A} = \frac{4EI}{l} \varphi$ $M_{B} = \frac{2EI}{l} \varphi$ $V_{A} = \frac{6EI}{l^{2}} \varphi$ $V_{B} = \frac{6EI}{l^{2}} \varphi$	M _A V _A B M _B V _B	$M_{A} = \frac{2EI}{l} \varphi$ $M_{B} = \frac{4EI}{l} \varphi$ $V_{A} = \frac{6EI}{l^{2}} \varphi$ $V_{B} = \frac{6EI}{l^{2}} \varphi$
M _A A V _B N _B	$M_{A} = \frac{6EI}{l^{2}} \eta$ $M_{B} = \frac{6EI}{l^{2}} \eta$ $V_{A} = \frac{12EI}{l^{3}} \eta$ $V_{B} = \frac{12EI}{l^{3}} \eta$	M_A V_A V_B M_B	$M_{A} = \frac{6EI}{l^{2}} \eta$ $M_{B} = \frac{6EI}{l^{2}} \eta$ $V_{A} = \frac{12EI}{l^{3}} \eta$ $V_{B} = \frac{12EI}{l^{3}} \eta$
H _A B H _B	$H_{A} = \frac{EA}{l}\eta$ $H_{B} = \frac{EA}{l}\eta$	H_A H_B	$H_{A} = \frac{EA}{l}\eta$ $H_{B} = \frac{EA}{l}\eta$
$M_{A} \left(\begin{array}{c} A \\ \hline \\ V_{A} \end{array} \right) M_{B}$	$M_{A} = \frac{ab^{2}}{l^{2}}F$ $M_{B} = \frac{ba^{2}}{l^{2}}F$ $V_{A} = \frac{b^{2}}{l^{3}}(l+2a)F$ $V_{B} = \frac{b^{2}}{l^{3}}(l+2b)F$	M_A V_A V_B M_B	$M_{A} = \frac{Fl}{8}$ $M_{B} = \frac{Fl}{8}$ $V_{A} = \frac{F}{2}$ $V_{B} = \frac{F}{2}$
$\begin{array}{c c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	$M_{A} = \frac{b}{l^{2}} (2a - b)m$ $M_{B} = \frac{a}{l^{2}} (2b - a)m$ $V_{A} = \frac{6ab}{l^{3}} m$ $V_{B} = \frac{6ab}{l^{3}} m$	$M_{A} \left(\begin{array}{c} M^{2} \\ M_{B} \end{array} \right) M_{B}$ $V_{A} \qquad V_{B} \qquad V_{B}$	$M_{A} = \frac{m}{4}$ $M_{B} = \frac{m}{4}$ $V_{A} = \frac{3}{2} \frac{m}{l}$ $V_{B} = \frac{3}{2} \frac{m}{l}$
M_A V_A V_B M_B M_B M_B M_B M_B	$M_{A} = \frac{ga^{2}}{12l^{2}}(l^{2} + 2lb + 3b^{2})$ $M_{B} = \frac{ga^{3}}{12l^{2}}(l + 3b)$ $V_{A} = \frac{ga}{2l^{3}}[2l^{3} - a^{2}(l + b)]$ $V_{B} = \frac{ga^{3}}{2l^{3}}(l + b)$ $M_{A} = \frac{l^{2}}{60}(3q_{A} + 2q_{B})$	M_A $\begin{pmatrix} Q & Q & Q & Q & Q & Q & Q & Q & Q & Q $	$M_{A} = \frac{ql^{2}}{12}$ $M_{B} = \frac{ql^{2}}{12}$ $V_{A} = \frac{ql}{2}$ $V_{B} = \frac{ql}{2}$
M_A $\begin{pmatrix} A & A & A & A \\ A & A & A & A \\ & & & &$	$\begin{split} M_{\rm B} &= \frac{l^2}{60} (2q_{\rm A} + 3q_{\rm B}) \\ V_{\rm A} &= \frac{l}{20} (7q_{\rm A} + 3q_{\rm B}) \\ V_{\rm B} &= \frac{l}{20} (3q_{\rm A} + 7q_{\rm B}) \end{split}$	•	, B – 2
$M_{A} \left(\begin{array}{ccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	$M_{\rm A} = 2EI\alpha \frac{\Delta T}{h}$ $M_{\rm B} = 2EI\alpha \frac{\Delta T}{h}$	H_{Λ} H_{Λ} H_{Λ} H_{B}	$H_{A} = EA\alpha\Delta T$ $H_{B} = EA\alpha\Delta T$

a) SUPPORTED FRAME

$$K_1 = \frac{H}{L} \frac{I_t}{I_m}$$

$$K_2 = 2\left(1 + \frac{2}{3} K_1\right)$$

Legenda

1.

$$X_A = X_B = P \frac{L}{H} \frac{\alpha \beta}{K_2}$$

$$Y_A = P \beta \quad Y_B = P \alpha$$

$$Y_A = P \beta \quad Y_B = P \alpha$$

$$X_A = X_B = p \frac{\alpha^2 L^2}{6H} \frac{3 - 2 \alpha}{K_2}$$

$$X_A = X_B = p \frac{\alpha^2 L^2}{6H} \frac{3 - 2 \alpha}{K_2}$$

$$Y_A = p \alpha L \frac{2 - \alpha}{2} \quad Y_B = P \alpha^2 \frac{L}{2}$$

$$M_C = M_D = p \frac{\alpha^2 L^2}{6} \frac{3 - 2 \alpha}{K_2}$$

3.

$$X_A = - \ p \ \frac{H}{4} \left(3 - \frac{K_1}{3 K_2} \right) \quad X_B = + \ p \ \frac{H}{4} \left(1 + \frac{K_1}{3 K_2} \right)$$

$$M_C = - \ p \ \frac{H^2}{4} \left(1 - \frac{K_1}{3K_2} \right) \quad M_D = + \ p \ \frac{H^2}{4} \left(1 + \frac{K_1}{3K_2} \right)$$

4

$$X_{A} = -p \frac{H}{180} \left(75 - 7 \frac{K_{1}}{K_{2}}\right) \quad X_{B} = +p \frac{H}{180} \left(15 + 7 \frac{K_{1}}{K_{2}}\right)$$

$$Y_A = -Y_B = -\frac{pH^2}{6L}$$

$$M_C = -~p~\frac{H^2}{180} \left(15 - 7~\frac{K_1}{K_2}\right) ~~M_D = +~p~\frac{H^2}{180} \left(15 + 7~\frac{K_1}{K_2}\right)$$

$$X_A = X_B = \frac{2 E \alpha \Delta t I_t}{K_2 H^2}$$

$$Y_A = Y_B = 0$$

$$M_C = M_D = \frac{2 E \alpha \Delta t I_t}{K_2 H}$$

6.

$$\chi = \frac{1 + K_1 (1 - 1/3 \beta^2)}{K^2}$$

$$X_A = -P (1 - \beta \chi)$$

$$X_B = P \beta \chi$$

$$X_A = -P (1 - \beta \chi)$$

$$X_B = P \beta \chi$$

$$Y_B = -Y_A = P \frac{H}{L} \beta$$

$$M_C = -P \beta H (1-\chi) \qquad M_D = P \beta H \chi$$

$$M_0 = -X_A \beta H$$

$$M_D = P \beta H \chi$$

$$M_0 = -X_A \beta H$$

$$X_A = X_B = 2 \frac{Pd}{H} \frac{1 + K_1 (1 - \beta^2)}{K_2}$$

 $Y_A = Y_B = P$

$$Y_A = Y_B = P$$

$$M_C = M_D = -Pd + X_A H$$

$$M_2 = Pd - X_A \beta H$$

$$R_A = \frac{F \cdot b}{l}; \ R_B = \frac{F \cdot a}{l}$$

$$k = \frac{h}{l}$$

$$H_A = H_B = \frac{3 \cdot F \cdot a \cdot b}{2 \cdot h \cdot l \cdot (2k+3)}$$

$$M_C = M_E = \frac{3 \cdot F \cdot a \cdot b}{2 \cdot l \cdot (2k+3)}$$

$$M_D = \frac{F \cdot a \cdot b}{2l} \cdot \frac{4k+3}{2k+3}$$

$$R_A = R_B = \frac{F \cdot h_1}{l}$$

$$H_A = \frac{F \cdot h}{2 \cdot l} \cdot \left[\frac{4h^3 + h_1^3 - 3h_1 \cdot h^2}{h \cdot (2h + 3l)} + \frac{6h \cdot l - 3h_1 \cdot h \cdot l}{h \cdot (2h + 3l)} \right]$$

$$\begin{split} H_B &= F - H_A \\ M_E &= H_A \cdot h; \ M_C = H_A \cdot h - F \cdot h_2 \\ \\ M_D &= -H_B \cdot h = -(F - H_A) \cdot h \end{split}$$

$$R_A = R_B = \frac{q \cdot l}{2}$$

$$H_A = H_B = \frac{q \cdot l^2}{4h \cdot \left(2\frac{h}{l} + 3\right)}$$

$$M_D = \frac{q \cdot l^2}{8} \cdot \frac{2h + l}{2h + 3l}$$

$$M_C = M_E = \frac{q \cdot l^2}{4 \cdot \left(2\frac{h}{l} + 3\right)}$$

$$R_A = R_B = \frac{q \cdot h^2}{2l}$$

$$H_A = \frac{q \cdot h}{8} \cdot \frac{11h + 18l}{2h + 3l}$$

$$H_B = q \cdot h - H_A$$

$$M_E = \frac{q \cdot h^2}{128} \cdot \left(\frac{11k + 18}{2k + 3}\right)^2; \ k = \frac{h}{l}$$

$$h_E = \frac{h}{8} \cdot \left(\frac{11k + 18}{2k + 3}\right)$$

$$M_C = \frac{3}{8} \cdot q \cdot l^2 \cdot \frac{h+2l}{2h+3l}$$

$$M_D = -\frac{q \cdot h^2}{8} \cdot \frac{5k + 6}{2k + 3}$$

$$R_{A} = \frac{F \cdot b}{l} \cdot \frac{6 \cdot h \cdot l + l^{2} + a \cdot l - 2a^{2}}{6 \cdot h \cdot l + l^{2}}$$

$$R_{B} = \frac{F \cdot a}{l} \cdot \frac{6 \cdot h \cdot l + 3 \cdot a \cdot l - 2a^{2}}{6 \cdot h \cdot l + l^{2}}$$

$$H_{A} = H_{B} = \frac{3 \cdot F \cdot a \cdot b}{2 \cdot h \cdot l \cdot \left(\frac{h}{l} + 2\right)}$$

$$M_{A} = \frac{F \cdot a \cdot b}{2l} \cdot \frac{5 \cdot h \cdot l - l^{2} + 2a \cdot (h + 2l)}{(h + 2l) \cdot (6h + l)}$$

$$M_{B} = \frac{F \cdot a \cdot b}{2l} \cdot \frac{3l + 7 \cdot h \cdot l - 2a \cdot (h + 2l)}{(h + 2l) \cdot (6h + l)}$$

$$M_{C} = M_{A} - H_{A} \cdot h$$

$$M_{E} = M_{B} - H_{B} \cdot h$$

$$M_{D} = M_{A} - H_{A} \cdot h + R_{A} \cdot a$$

$$\begin{split} R_{A} &= R_{B} = \frac{3 \cdot F \cdot h_{1}^{2}}{6 \cdot h \cdot l + l^{2}}; \quad H_{A} = F - H_{B} \\ H_{B} &= \frac{F \cdot h_{1}}{2 \cdot h^{2} \cdot \left(\frac{h}{l} + 2\right)} \cdot \left[3 \cdot \left(\frac{h}{l} + 1\right) - \frac{h_{1}}{h} \cdot \left(2 \cdot \frac{h}{l} + 1\right)\right] \\ M_{A} &= -\frac{F \cdot h_{1}^{2}}{2h} \cdot \left[\frac{2h}{h_{1}} - \frac{3h \cdot l + 2h^{2} - h \cdot (h + l)}{h^{2} + 2 \cdot h \cdot l} - \frac{3h^{2}}{6 \cdot h^{2} + h \cdot l}\right] \\ M_{B} &= \frac{F \cdot h_{1}^{2}}{2 \cdot h} \cdot \left[\frac{3 \cdot h \cdot l + 2h^{2} - h \cdot (h + l)}{h^{2} + 2 \cdot h \cdot l} - \frac{3h^{2}}{6 \cdot h^{2} + h \cdot l}\right] \\ M_{E} &= M_{A} + H_{A} \cdot h_{1} \\ M_{D} &= M - H_{B} \cdot h \\ M_{C} &= M_{A} + H_{A} \cdot h_{1} - F \cdot h_{2} \end{split}$$

b) SUPPORTED FRAME WITH SLOPED ROOF

1.

$$X_A = X_E = \frac{P \alpha L}{4H} \frac{1}{K_2} [6\beta + \phi (3 - 4 \alpha^2)]$$

$$Y_A = P \beta$$
 $Y_E = P \alpha$
 $M_B = M_D = X_A H$

$$M_B = M_D = X_A H$$

$$M_0 = Y_A \alpha L - X_A H (1 + 2 \varphi \alpha)$$

$$X_E = \frac{P \beta}{4} \frac{1}{K_2} [K_1 (3 - \beta^2) + 3 (2 + \varphi)]$$

$$X_A = X_E - P$$

$$X_A = X_E - P$$

$$Y_E = -Y_A = P \beta H/L$$

$$M_B = X_E H - P \beta H$$

$$M_B = X_E H - P \beta H \qquad M_C = X_E H (1 + \varphi) - P \beta \frac{H}{2}$$

$$M_D = X_E H$$

$$M_0 = -X_A \beta H$$

$$X_A = X_E = \frac{pL^2}{32H} \frac{1}{K_2} (8 + 5 \phi)$$

$$\mathsf{E} \qquad \qquad Y_A = Y_E = P \, \frac{L}{2}$$

$$M_B = M_D = X_A H$$

$$X_E = p \frac{H}{16} \frac{1}{K_2} [5 K_1 + 6 (1 + \varphi)] \qquad X_A = X_E - pH$$

$$Y_E = -Y_A = p \frac{H^2}{2L}$$

$$M_B = X_E H - p \frac{H^2}{2}$$

$$M_B = X_E H - p \frac{H^2}{2}$$
 $M_C = X_E H (1 + \varphi) - p \frac{H^2}{4}$

$$M_D = X_E H$$

$$X_A = X_E = \frac{3}{2} \frac{Pd}{H} \frac{1}{K_2} [K_1 (1 - \beta^2) + (2 + \varphi)]$$

$$\mathsf{E} \qquad Y_A = Y_E = P$$

$$M_B = M_D = X_A H - Pd$$
 $M_C = X_A H (1 + \varphi) - Pd$

$$M_C = X_A H (1 + \varphi) - Pd$$

$$M_1 = X_A \beta H$$

$$M_2 = Pd - X_A \beta H$$

c) SUPPORTED FRAME WITH CURVED ROOF

$$K_1 = \frac{H}{L} \frac{I_t}{I_m}$$

$$K_2 = 5(2K_1 + 3) + 4\varphi(5 + 2\varphi)$$

φ ≪ 1

Legenda

$$X_A = X_D = p \frac{L^2}{4H} \frac{1}{K_2} (5 + 4 \varphi)$$

$$Y_A = Y_D = p \, \frac{L}{2}$$

$$M_B = M_C = X_A H$$

$$M_0 = p \; \frac{L^2}{8} - X_A \; H \; (1 + \varphi)$$

2.

$$X_D = \frac{5}{8} \ pH \ \frac{1}{K_2} \ [(5 \ K_1 + 6) + 4 \ \phi]$$

$$X_A = X_D - pH \qquad \qquad Y_A = Y_D = p \ \frac{H^2}{2L}$$

$$X_A = X_D - pH$$

$$Y_A = Y_D = p \frac{H^2}{2L}$$

$$M_B = X_D \ H - p \ \frac{H^2}{2}$$

$$M_C = X_D H$$

$$X_A = X_D = 5 \frac{Pd}{H} \frac{1}{K^2} [3 K_1 (1 - \beta^2) + (3 + 2 \phi)]$$

$$Y_A = Y_D = P$$

$$M_B = M_C = X_A H - Pd$$

$$M_1 = X_A \beta H \qquad \qquad M_2 = Pd - X_A \beta H$$

$$M_2 = Pd - X_A \beta H$$

d) FIXED FRAME

Legenda

$$\chi_1 = \frac{1}{2 + K_1}$$
 $\chi_2 = \frac{\beta - \alpha}{1 + 6K_1}$

$$X_A = X_B = \frac{3}{2} P \frac{L}{H} \alpha \beta \chi_1$$

$$Y_A = P \beta (1 + \alpha \chi_2)$$
 $Y_B = P \alpha (1 - \beta \chi_2)$

$$M_A = -P \frac{L}{2} \alpha \beta (\chi_1 - \chi_2) \quad M_B = -P \frac{L}{2} \alpha \beta (\chi_1 + \chi_2)$$

$$M_C = + P \; \frac{L}{2} \; \alpha \; \beta \; (2\chi_1 + \chi_2) \quad M_D = + P \; \frac{L}{2} \; \alpha \; \beta \; (2\chi_1 - \chi_2) \label{eq:mc}$$

$$\chi_1 = \frac{3-2\alpha}{2+K_1}$$
 $\chi_2 = \frac{(1-\alpha)^2}{1+6K_1}$

$$\chi_{1} = \frac{3 - 2\alpha}{2 + K_{1}} \quad \chi_{2} = \frac{1}{1 + K_{1}}$$

$$X_{A} = X_{B} = p \frac{\alpha^{2} L^{2}}{4H} \chi_{1}$$

$$X_{A} = \chi_{B} = p \frac{\alpha^{2} L^{2}}{4H} \chi_{1}$$

$$Y_A = p \alpha L \left[1 - \frac{\alpha}{2} (1 - \chi_2) \right] \quad Y_B = p \alpha^2 \frac{L}{2} (1 - \chi_2)$$

$$M_A = -p \frac{\alpha^2 L^2}{12} (\chi_1 - 3 \chi_2) \quad M_B = -p \frac{\alpha^2 L^2}{12} (\chi_1 + 3 \chi_2)$$

$$M_C = + p \frac{\alpha^2 L^2}{12} (2\chi_1 + 3 \chi_2)$$
 $M_D = + p \frac{\alpha^2 L^2}{12} (2\chi_1 - 3 \chi_2)$

3.

$$\chi_1 = \frac{9 + 3K_1}{2 + K_1}$$
 $\chi_2 = \frac{12K_1}{1 + 6K_1}$ $\chi_3 = \frac{K_1}{2 + K_1}$

B
$$X_A = -p \frac{H}{8} \frac{13 + 6K_1}{2 + K_1} \quad X_B = p \frac{H}{8} \frac{3 + 2K_1}{2 + K_1}$$

$$Y_A = -Y_B = -p \frac{H^2}{L} \frac{K_1}{1 + 6K_1}$$

$$M_A = p \, \frac{H^2}{2} - p \, \frac{H^2}{24} \, (\chi_1 + \chi_2) \quad M_B = - p \, \frac{H^2}{24} \, (\chi_1 - \chi_2)$$

$$M_C = + p \frac{H^2}{24} (\chi_3 - \chi_2)$$
 $M_D = + p \frac{H^2}{24} (\chi_3 + \chi_2)$

4.

$$\chi_1 = \frac{12 + 7K_1}{2 + K_1}$$
 $\chi_2 = \frac{15K_1}{1 + 6K_1}$ $\chi_3 = \frac{2K_1}{2 + K_1}$

$$X_A = -p \frac{H}{40} \frac{36 + 17K_1}{2 + K_1} \quad X_B = p \frac{H}{40} \frac{4 + 3K_1}{2 + K_1}$$

$$Y_A = -Y_B = -p \frac{H^2}{4L} \frac{K_1}{1 + 6K_1}$$

$$Y_A = -Y_B = -p \frac{H^2}{4L} \frac{K_1}{1 + 6K_1}$$

$$M_A = p \frac{H^2}{6} - p \frac{H^2}{120} (\chi_1 + \chi_2)$$
 $M_B = -p \frac{H^2}{120} (\chi_1 - \chi_2)$

$$M_C = + p \frac{H^2}{120} (\chi_3 - \chi_2)$$
 $M_D = + p \frac{H^2}{120} (\chi_3 + \chi_2)$

D
$$X_A = X_B = \frac{3E \alpha \Delta t I_t}{H_2} \frac{1 + 2K_1}{K_1 (2 + K_1)}$$

B $Y_A = Y_B = 0$
 $M_A = M_B = -\frac{3E \alpha \Delta t I_t}{H} \frac{1 + K_1}{K_1 (2 + K_1)}$

$$Y_A = Y_B = 0$$

$$M_A = M_B = -\frac{3E \alpha \Delta t I_t}{H} \frac{1 + K_1}{K_1 (2 + K_1)}$$

$$M_C = M_D = + \frac{3E \alpha \Delta t I_t}{H} \frac{1}{2 + K_1}$$

$$y_0 = H \frac{K_1}{1 + 2K_1}$$

6.

$$\chi_1 = \frac{1 + (2 - \beta) (1 + K_1)}{2 + K_1}$$
 $\chi_2 = \frac{3K_1}{1 + 6K_1}$

$$\chi_2 = \frac{3K_1}{1 + 6K_1}$$

$$\chi_3 = \frac{(1-\beta) K_1}{2 + K_1}$$

$$\chi_{3} = \frac{(1-\beta) K_{1}}{2+K_{1}} \qquad \qquad \chi_{4} = \frac{3 (1+K_{1}) - \beta (1+2K_{1})}{2+K_{1}}$$

$$X_{A} = -P + \frac{P}{2} \beta^{2} \chi_{4} \qquad \qquad X_{B} = \frac{P}{2} \beta^{2} \chi_{4}$$

$$X_A = -P + \frac{P}{2} \beta^2 \chi_4$$

$$X_B = \frac{P}{2} \beta^2 \chi_4$$

$$Y_A = -Y_B = -P \frac{H}{L} \beta^2 \chi_2$$

$$M_A = PH \beta - \frac{PH}{2} \beta^2 (\chi_1 + \chi_2)$$

$$M_B = -\frac{PH}{2} \ \beta^2 \ (\chi_1 - \chi_2)$$
 $M_C = \frac{PH}{2} \ \beta^2 \ (\chi_3 - \chi_2)$

$$M_C = \frac{PH}{2} \beta^2 (\chi_3 - \chi_2)$$

$$M_D \,=\, P \,\, \frac{H}{2} \,\, \beta^2 \,\, (\chi_3 + \chi_2) \qquad \qquad M_0 \,=\, -\, M_A - X_A \,\, \beta \,\, H$$

$$M_0 = -M_A - X_A \beta H$$

$$X_A = X_B = 3 \frac{Pd}{H} \frac{2\beta K_1 (1-\beta) + \beta (2-\beta)}{2 + K_1}$$

$$Y_A = Y_B = F$$

$$M_A = M_B = -Pd \frac{K_1 (4\beta - 3\beta^2 - 1) + (6\beta - 3\beta^2 - 2)}{2 + K_1}$$

$$M_C = M_D = M_A + X_A H - Pd$$

$$M_1 = M_A + X_A \beta H$$

$$M_1 = M_A + X_A \beta H \qquad M_2 = -M_A - X_A \beta H + Pd$$

e) FIXED FRAME WITH SLOPED ROOF

$$K_1 = \frac{H}{S} \frac{I_t}{I_m}$$

$$K_2 = (K_1 + \varphi)^2 + 4 K_1 (\varphi^2 + \varphi + 1)$$

Legenda

$$\begin{split} \chi_1 &= \frac{1}{K_2} \left[2\beta \ K_1 + 3\phi \ (2\alpha + K_1) - \phi^2 \ (1 + 4\alpha) \right. + \\ &- 4\alpha^2 \ \phi \ (2 + K_1) - 4 \ \alpha^2 \ \phi^2 \right] \end{split}$$

$$D \qquad \chi_2 = \beta (\beta - \alpha)/(1 + 3K_1)$$

$$X_A = X_E = p \alpha \frac{L}{H} \frac{1}{K_2} \left[3K_1 (1+\varphi) + -4\alpha^2 \varphi (1+K_1) - 3\alpha (K_1-\varphi) \right]$$

$$Y_A = P \beta + (M_A - M_E)/L$$
 $Y_E = P \alpha - (M_A - M_E)/L$

$$Y_F = P \alpha - (M_A - M_E)/L$$

$$M_A = -\frac{P \alpha L}{2} (\chi_1 - \chi_2) \qquad M_E = -\frac{P \alpha L}{2} (\chi_1 + \chi_2)$$

$$M_E = -\frac{P \alpha L}{2} (\chi_1 + \chi_2)$$

$$M_B = M_A + X_A H$$

$$M_C = M_E + X_A \ H \ (1+\varphi) - Y_E \ \frac{L}{2}$$

$$M_D = M_E + X_A H$$

$$M_0 \,=\, -\, M_A - X_A \,\, H \,\, (1+2\varphi \,\, \alpha) + Y_A \,\, \alpha \,\, L \label{eq:m0}$$

2.

$$\begin{split} \chi_1 &= \frac{1}{K_2} \left[K_1 \left(4 + K_1 - 2\beta \ K_1 - 6\beta + 6 \ \phi \right) + \beta^2 \ K_1 \left(K_1 + 2 + \phi \right) + \right. \\ &\left. + 2\phi \ K_1 \left(2\phi - \beta\phi - 3\beta \right) + \phi^2 \right] \end{split}$$

$$\chi_2 = \frac{2 + 3K_1 (2 - \beta)}{2 + 6K_1}$$

D
$$\chi_{2} = \frac{2 + 3K_{1} (2 - \beta)}{2 + 6K_{1}}$$

$$K_{E} = \frac{P \beta}{2} \frac{1}{K_{2}} [6K_{1} (1 + \phi) + 6\alpha \beta K_{1}^{2} + 4\beta^{2} K_{1} (1 + K_{1}) + 3\beta K_{1} (2 + K_{1}) - 3\phi K_{1} (1 + \alpha)]$$

$$X_A = X_E - P \qquad \qquad Y_E = - \, Y_A = P \, \, \beta \, \, \frac{H}{L} - \frac{M_A - M_E}{L} \label{eq:XA}$$

$$M_A = \frac{P \beta H}{2} (\chi_1 + \chi_2) \qquad M_B = \frac{P \beta H}{2} (\chi_1 - \chi_2)$$

$$M_C = M_E + X_E H (1 + \varphi) - Y_E \frac{L}{2}$$

$$M_C = M_E + X_E H (1 + \varphi) - Y_E \frac{L}{2}$$

$$M_D = M_E + X_E H \qquad \qquad M_0 = -M_A - X_A \beta H$$

$$M_0 = -M_A - X_A \beta H$$

D
$$X_A = X_E = P \frac{L^2}{8H} \frac{1}{K_2} [K_1 (4+5\phi) + \phi]$$

E $Y_A = Y_E = P \frac{L}{2}$

$$Y_A = Y_E = P \frac{L}{2}$$

$$M_A \,=\, M_E \,=\, -\, P \,\, \frac{L^2}{48} \,\, \frac{1}{K_2} \,\, [K_1 \,\, (8+15\phi) + \phi \,\, (6-\phi)]$$

$$M_R = M_D = M_A + X_A H$$

$$M_C = -\,P\,\,\frac{L^2}{8} + M_A + X_A\,\,H\,\,(1+\phi)$$

4.

$$\chi_1 = \frac{1}{K_2} \left[K_1 (6 + K_1) + K_1 \varphi (15 + 16\varphi) + 6 \varphi^2 \right]$$

$$\chi_2 = (12K_1 + 6)/(1 + 3K_1)$$

D
$$\chi_2 = (12K_1 + 6)/(1 + 3K_1)$$

 $X_E = p \frac{H}{4} \frac{1}{K_2} [K_1^2 + K_1 (3 + 2\phi)]$ $X_A = X_E - p H$

$$Y_E = -Y_A = p \frac{H^2}{2L} - \frac{M_A - M_E}{L}$$

$$M_A = p \frac{H^2}{24} (\chi_1 + \chi_2)$$
 $M_E = p \frac{H^2}{24} (\chi_1 - \chi_2)$

$$M_E = p \frac{H^2}{24} (\chi_1 - \chi_2)$$

$$M_B = M_A - p \frac{H^2}{2} + X_E H$$
 $M_D = M_E + X_E H$

$$M_D = M_E + X_E H$$

 $M_C = M_E + X_E H (1 + \varphi) - Y_E \frac{L}{2}$

$$X_A = X_E = 6 \frac{Pd}{H} \frac{1}{K_2} [K_1 (1 + \varphi + \alpha) - \alpha (\alpha K_1 + \alpha + \varphi)]$$

$$Y_A = Y_E = P$$

$$P \qquad P \qquad P \qquad P \qquad P \qquad M_A = Y_E = P \qquad M_A = M_E = -Pd \frac{1}{K_2} \left[K_1 \left(2\alpha K_1 + 2 + 3\phi \right) - \alpha \phi K_1 + (6 + 3\alpha + 4\phi) - (3\alpha^2 K_1^2 + 6\alpha^2 K_1 + \phi^2) \right]$$

$$M_B = M_D = M_A - Pd + X_A H$$

$$M_C = M_A - Pd + X_A H (1 + \varphi)$$

$$M_1 = M_A + X_A \beta H$$

$$M_1 = M_A + X_A \beta H$$

$$M_2 = -M_A + Pd - X_A \beta H$$

f) SUPPORTED FRAME WITH TENSIONING HORIZONTAL BEAM

1.

$$\begin{split} K_1 &= \frac{H}{S} \frac{I_t}{I_m} \qquad K_2 = \left[1 + \frac{3}{2} \frac{E \, I_t}{E^* \, A} \, \frac{L}{\phi^2 H_s^2}\right]^{-1} \qquad \underset{E^* \, A \to \infty}{\lim} K_2 = 1 \\ X_A &= X_E = p \, \frac{L^2}{16H} \, \frac{(16 - 15 K_2) + 10 \, \phi \, (1 - K_2)}{(4 K_1 + 12 - 9 K_2) + 12 \phi \, (1 - K_2) + 4 \phi^2 \, (1 - K_2)} \qquad Y_A = Y_E = p \, \frac{L}{2} \\ N &= \frac{5}{32} \, p \, \frac{L^2}{\phi \, H} \, K_2 - \left(\frac{3}{2} \, \frac{1}{\phi} + 1\right) \, K_2 \, X_A \\ M_B &= M_D = X_A \, H \qquad M_C = -p \, \frac{L^2}{8} + X_A \, H \, (1 + \phi) + N \, H \, \phi \end{split}$$

$$\begin{split} K_1 &= \frac{H}{L} \, \frac{I_I}{I_m} \qquad K_2 = \frac{5 + 4 \, \varphi}{5 \, (3 + 2 K_1) + 4 \varphi \, (5 + 2 \varphi)} \qquad K_3 = 1 - 2 \, \varphi \, K_2 \\ K_4 &= \frac{E \, I_I}{E^* \, A} \, \frac{1}{\varphi^2 \, H^2} \cdot \frac{1}{K_2^2 \, (3 + 2 K_1) - 2 K_2 \, K_3 + 0,4 K_3^2} \qquad \lim_{E^* \, A \to \infty} K_4 = 0 \\ X_A &= X_D = p \, \frac{L^2}{4 H} \, \frac{K_2 K_4}{1 + K_4} \qquad Y_A = Y_D = p \, \frac{L}{2} \qquad N = \frac{p L^2}{8 H \, \varphi} \, \frac{1}{1 + K_4} \\ M_B &= M_C = X_A \, H \qquad M_0 = p \, \frac{L^2}{8} - X_A \, H \, (1 + \varphi) - N \, H \, \varphi \end{split}$$

g) CLOSED RECTANGULAR FRAME

Legenda

1.

$$K_2 = (3 + 2K_1) + K_1 (2 + K_1)$$

$$P M_B = M_C = \frac{PH \alpha \beta}{3} \frac{K_1}{K_2} [(1+\alpha)(3+2K_1) - K_1(1+\beta)]$$

$$D M_A = M_D = \frac{PH \alpha \beta}{3} \frac{K_1}{K_2} [(1+\beta) (3+2K_1) - K_1 (1+\alpha)]$$

$$M_0 \,=\, PH \,\,\alpha \,\,\beta - M_A \,\,\beta - M_B \,\,\alpha$$

$$N_{AD} = -P \beta - \frac{M_A - M_B}{H} \qquad N_{AB} = N_{CD} = 0$$

$$N_{AB} = N_{CD} = 0$$

$$N_{BC} = -P \alpha + \frac{M_A - M_B}{H}$$

$$M_A = M_B = M_C = M_D = -\frac{p}{12} \frac{L^2 + H^2 K_1}{1 + K_1}$$

$$M_1 = p \frac{H^2}{8} + M_A$$
 $M_2 = p \frac{L^2}{8} + M_A$

$$M_2 = p \frac{L^2}{8} + M_A$$

$$N_{AB} = N_{CD} = p \; \frac{L}{2}$$

$$N_{AD} = N_{BC} = p \, \frac{H}{2}$$

h) SHED TYPE FRAME

